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Abstract 

NASA is investigating the application of the Phase Doppler measurement technique to 
provide improved drop sizing and liquid water content measurements in icing research. 
magnitude of counting errors were analyzed because these errors contribute to inaccurate 
liquid water content measurements. 
due to data transfer losses and coincidence losses were analyzed for data input rates from 
10 samples/second to 70,000 samples/second. Coincidence losses were calculated by 
determining the Poisson probability of having more then one event occurring during the 

0 droplet signal time. The magnitude of the coincidence loss can be determined, and for 
g less than a 15 percent loss, corrections can be made. The data transfer losses were 
l estimated for representative data transfer rates. With direct memory access enabled, data 

transfer losses are less than 5 percent for input rates below 2000 samples/second. With 
direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/second 
preventing accurate number density or mass flux measurements. The data transfer losses of 
a new signal processor were analyzed and found to be less than 1 percent for rates under 
65,000 samples/second and only increase to 3 percent at the maximum throughput of 70,000 
samples/second. 

The 

The Phase Doppler Particle Analyzer counting errors 

ln 

Lntroduction 

The reliable measurement of drop size distributions and liquid water content (WC) is 
an impor ant goal in icing research. 
reported' indicating a significant variation between the measured median volume diameters 
(MVD) and a greater variation in their indicated LWC. 
develop i proved calibration techniques for the drop sizing instruments now used in icing 
research.' In addition to this program, NASA is looking for advanced concepts for icing 
instrumentation to provide improved drop sizing and LWC measurements. The Phase Doppler 
measurement technique is one concept which is currently under investigation. 

instrument9-' which can simultaneously measure the droplet size, velocity , and local mass 
flux. 
instruments and demonstrated good agreement with significantly different measurement 
techniques. 

been reported' indicating agreement to 210 percent, and if affects of nonparalyzable dead 
time are included the agreement would improve to k5 percent. 
high velocity sprays these counting errors will become more significant. 

coincidence were analyzed for a wide range of data rates, representative droplet Signal 
lengths, and data transfer times. 

Comparison of drop size instruments have been 

A program is being pursued to 

The P a e Doppler measurement technique has been developed into a drop Sizing 

The ghase Doppler Particle Analyzer (PDPA) has been compared to other drop sizing 

A compar son of the PDPA's Local mass flux measurements with other techniques has 

In high number density or 

In the present study, the counting errors due to instrument dead time and droplet 

Nomenclature 

En Efficiency of a nonparalyzable element 

Efficiency of a paralyzable element 

Probability of k events in the queue 
EP 

'k 
Ri Input rate, sec-1 

RO output rate, sec-l 

1 



Queueing rate , sec'l 
Service rate, sac-1 

Data transfer or dead time, microseconds 

Signal time, microseconds 

Minimum signal time, microseconds 

Traffic intensity 

Countinu Er rors 

The Phase Doppler Particle Analyzer is one of a class of instruments called single 
particle counters. These instruments all suffer from the possibility of counting errors 
of two main types, coincidence losses and dead time losses. To understand how these 
errors arise, Figures l(a) to l(e) are presented to illustrate five possible events as two 
particles pass through the sample volume. 

1. Figure l(a) illustrates the ideal case. The first droplet is detected by the 
system as the signal exceeds a minimum threshold. 
system must transfer the signal information to the computer and reset the 
electronics for the next event. 
period necessary to transfer the signal information into the computer memory. The 
processor returns to a llreadyll state before the next droplet signal begins. 

2. In Figure l(b) the second droplet enters the sample volume during the data 
transfer period, but the end of the signal is detected af ter  the end of the data 
transfer period. This partial signal is accepted because it exceeds a minimum 
signal time, &. 

3. Figure l(c) illustrates a data transfer loss. The first droplet leaves the sample 
volume and the data transfer is initiated. 
passes through the sample volume. 
does not affect the transfer period or any other aspect of the system. 

the second signal ends after the end of the data transfer time, but does not 
exceed a minimum signal time. 
processor, but has no other affect on the system. 

5. A coincidence loss is illustrated in figure l(e). The second droplet enters the 
sample volume before the signal from the first droplet has dropped below the 
threshold. 
only as a continuation of the first event. Coincident events cause counting 
errors, and if the signal is accepted, may result in sizing errors. 

In the instrument sampling process the arrival of droplets at the sample volume can 

At the end of the signal the 

The time period, td! is determined by the time 

For these two examples no counting errors occur. 

During this time another droplet 
This signal is not detected by the system and 

4. Figure l(d) illustrates an event similar to that illustrated in l(c) except that 

This event triggers a hardware reset by the 

The system does not detect the second particle as a separate event, 

be treated as a Poisson process. 
an event only depends on the length of the time period, is independe t of when the time 
period occurs, and is independent of the past history of the system. 

transferring signal information into computer memory is a nonparalyzable element because 
once the process is initiated, a fixed time period, td, will elapse before the processor 
returns to a ready state. 
occurring during this time period. 
an active state, remains in an active state for a time period, te. Additional events 
occurring during this time period extend this active state until a time period of te has 
passed with no events. 

A Poisson process is a process where the probability of 
B 

The PDPA processor has both paralyzable and nonparalyzable elements. The process of 

The return to a ready state is independent of any events 
A paralyzable element is one that, once triggered into 

. .  oimdence Lossee 

The PDPA processor has no defined fixed time period, te, which is activated or reset 
as additional events occur. 
above is obvious. The processor, upon being triggered by a droplet signal into an active 
state, stays in this state until the end of the signal. Additional droplet signals 
beginning before the end of the previous signal will extend this active state. 

However, the resemblance to a coincident event described 

The counting efficiency of a paralyzable element given random inputs with a mean rate 
The efficiency of R 

of tkis process is given by 
is the Poisson probability of having zero events in its time period. 
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where te is the average signal time. 

physical variables. The signal time, which is the time for a particle to traverse the 
sample volume, is mainly a function of droplet velocity and sample volume size. But, this 
signal time is also influenced by the droplet size and droplet trajectory through the 
sample volume. Signal times tend to be shorter with high velocity droplets and small 
sample volumes, and conversely, longer with low velocity particles and larger sample 
volumes. The input rate is primarily a function of the drop number density and sample 
volume size. However, the droplet size and number density also influences the sample 
volume size. 

Because of the many physical variables which influence the droplet signal time, the 
analysis of coincidence losses is presented only in terms of the signal time and counting 
rate. In figure 2 the efficiency versus output rate of the PDPA is given for a series of 
signal times. A signal time of 5 microseconds is equivalent to a beam diameter of 160 
microns and a droplet velocity of 35 meters/second. This signal time enables counting 
rates up to 10,000 samples/second with only a 5 percent loss. 
velocity of 2 meters/second would result in a transit time across the same sample volume 
of 80 microseconds resulting in a 5 percent loss at only 600 samples/second. 

permit correction for losses up to approximately 15 percent. As the loss increases the 
curves become vertical making a reliable correction impossible. 
experimentally verified and the affect of coincident signals on the size distribution 
should be thoroughly understood before routinely implementing large corrections. - 
the system. For a nonparalyzable element, the dead time is simply Ro'td, and the 
efficiency of the system is the fractional live time given by 

In cloud measurements, the signal time and mean input rate are a function of several 

In contrast, a droplet 

These curves can be used to estimate the magnitude of coincidence losses and possibly 

These results need to be 

The transfer of signal data into the computer memory is the nonparalyzable element of 

where Re is the mean arrival rate and td is the data transfer time as presented in 
Reference (g f .  

signal information into computer memory. At the end of a signal there are 16 bytes o f  
data which must be transferred to the computer. The PDPA was designed to use an IBM PC 
for processing this signal data utilizing the direct memory access (DMA) capabilities to 
transfer the data into computer memory. The DMA controller in the PC operates at 4.77 Mhz 
and one 8 bit transfer requires 5 clock cycles resulting in a transfer in 1.05 
microseconds. The total data transfer time needed to make 16 transfers using a PC is 
about 18.5 microseconds which includes approximately 2 microseconds for controller 
latency. 
DMA transfer. If the PDPA is interfaced to an IBM PC/AT the data transfer time is 
increased to 28.5 microseconds because the DMA controller only operates at 3 Mhz. The DMA 
controller in an AT compatible being used with the PDPA at NASA perates at 5 Mhz reducing 
the DMA transfer time to 18 microseconds. 
use as a processor to reduce the data analysis time. The DMA transfer time for the Compaq 
is the same as the IBM PC/AT at 28.5 microseconds. 

In this mode, signal 
information is transferred to the computer, validated, and the size is determined before 
the signal processor can accept the next event. This mode increases the dead time 
considerably resulting in a large reduction in counting efficiency. When operating with 
the DMA off the dead time losses become dependant on the particular computer and the 
version of the PDPA analysis software in use. The dead time for an IBM PC/AT using PDPA 
System software Version 2.6 is about 1.7 milliseconds. 
released, Version 3.4.7, iygreases the dead time to 4 milliseconds. 
using a Compaq DESKPRO 386 as a processor would reduce the dead time to 1.3 
milliseconds. 

The data transfer time in the PDPA is a determined by the time needed to transfer the 

Latency is the average time period for the DMA controller to begin executing a 

A Compaq DESKPRO 386& is being considered for 

The PDPA can be run with the DMA capability turned off. 

The latest system software 
It is estimated that 
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where 

and 

Figure 3 clearly illustrates the severe reduction in counting efficiency resulting 
from not using the DMA capability. 
with the DMA off results in a 10 percent loss at an input rate of 25 per second. 
contrast, with the DMA on, a 10 percent loss does not occur until an input rate of 4000 
per second. Turning the DMA off, permits the data point to consist of a large number of 
droplet events which is not restricted by the total computer memory available. However, 
this prevents reliable number density and mass flux measurements. 

When the droplet event times are of the same magnitude as the dead time, equation (2) 
must be modified to account for droplet signals which begin during the dead time, but are 
counted because the signal ends after the data transfer time. This process is illustrated 
in figure 4. The second droplet enters the sample volume during the data transfer period 
td. At the end of this period, the system detects the signal which is accepted as a valid 
signal if it exceeds a minimum number of fringe crossings which can be considered a 
minimum signal time t,,,. 
losses is given by 

Using a AT with the latest version of the software 
In 

The efficiency of the processor with respect to data transfer 

te - tm 2 0 

The minimum number of fringe crossings is normally set to one-half the nominal number of 
fringes in the sample volume and therefore, nominally h=.5te. 

Figure 5 shows the effect of considering the signal time. 
a data transfer time of 28.5 microseconds, te from 0 to 80 microseconds, and t,,,=.5te. 
general, considering the signal time reduces the effective dead time. 
of 80 microseconds there are no dead time losses because one-half the signal time, 40 
microseconds, is greater than the data transfer time of 28.5 microseconds. 

m t a  Tran sfer Los ses in a Ne w Hiah SDee d Process or. 
Aerometrics has designed a new signal processor for performing measurements in high speed 
flows in support of NASA's icing research program. 
is to accept Doppler burst frequencies of up to 20 megahertz. In addition to the speed 
improvement, two features were incorporated to reduce data transfer losses. First, DMA 
transfer now take advantage of the 16 bit bus of the PC/AT. Signal data is passed into 
computer memory using 8 word transfers, instead of 16 byte transfers used in the original 
design, resulting in a data transfer time of 14.25 microseconds. Second, because the DMA 
transfer rate has been the limiting factor to obtaining low dead time losses, the new 
processor uses a first-in, first-out (FIFO) data buffer as a fast temporary storage for 
the signal information. 

The efficiency of this system is analyzed by treating it as a queueing problem. 
performance equations for a queueing system with a Poisson input, exponential service 
time, one server, and a limited queue length, is used to approximate the efficiency of 
this system. 

These results are based on 
In 

For a signal time 

Recently, under NASA contract, 

The main requirement of this processor 

The 

The rate at which events enter the queue is given by 

where 

and 
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The quantity R 
entering the deue will be processed. 
the ratio Ri/R,. The probability, 
queue (the queue is full) resulting 9 n lost events. 
with a data transfer time of 14.25 microseconds. For comparison, the curve for the 
previous design without a data buffer and a data transfer time of 28.5 microseconds is 
presented. 
and losses only increase to about 3 percent at the maximum throughput of 70,000 
samples/second. 

is the actual rate into the queue which equals R since all events 
The quantity u is the traffic intensity, which is 

, is the probability that there are k events in the 

Figure 6 plots the input rate versus output rate for the system using a data buffer 

Losses are less than 1 percent up to an input rate of 65,000 samples/second 

v 
The counting errors of the Phase Doppler Particle Analyzer were analyzed for a range 

of data rates, signal times, and data transfer times. In general, the analysis supports 
the following conclusions. 

estimated. Reliable corrections can be applied to losses less than 15 percent, however, 
the affect of coincident signals on the droplet size distribution needs to be investigated 
to assure that this distribution is still representative of the actual cloud. 

access enabled the losses are less than 5 percent for input rates under 2000 
samples/second and losses increase only to 20 percent for a rate of 10,000 samples/second. 

1. Given the average signal time, the magnitude of coincidence errors can be 

2. Data transfer losses can be estimated and corrected. With the direct memory 

3. Data transfer losses increase drastically when the DMA is disabled. Losses exceed 
20 percent for a very low input rate of 50 samples/second. 
mass flux measurements can not be obtained if the PDPA is operated in this mode. 

eliminates data transfer losses for all input rates less than the maximum throughput of 
70,000 samples/second. 

Accurate number density and 

4. Incorporation of a data buffer in a new signal processor design virtually 
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